Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 26(5)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38785678

RESUMO

We discuss the concept and realization of a heat bath in solid state quantum systems. We demonstrate that, unlike a true resistor, a finite one-dimensional Josephson junction array or analogously a transmission line with non-vanishing frequency spacing, commonly considered as a reservoir of a quantum circuit, does not strictly qualify as a Caldeira-Leggett type dissipative environment. We then consider a set of quantum two-level systems as a bath, which can be realized as a collection of qubits. We show that only a dense and wide distribution of energies of the two-level systems can secure long Poincare recurrence times characteristic of a proper heat bath. An alternative for this bath is a collection of harmonic oscillators, for instance, in the form of superconducting resonators.

2.
Nat Commun ; 15(1): 630, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245544

RESUMO

The fragile nature of quantum circuits is a major bottleneck to scalable quantum applications. Operating at cryogenic temperatures, quantum circuits are highly vulnerable to amplifier backaction and external noise. Non-reciprocal microwave devices such as circulators and isolators are used for this purpose. These devices have a considerable footprint in cryostats, limiting the scalability of quantum circuits. As a proof-of-concept, here we report a compact microwave diode architecture, which exploits the non-linearity of a superconducting flux qubit. At the qubit degeneracy point we experimentally demonstrate a significant difference between the power levels transmitted in opposite directions. The observations align with the proposed theoretical model. At - 99 dBm input power, and near the qubit-resonator avoided crossing region, we report the transmission rectification ratio exceeding 90% for a 50 MHz wide frequency range from 6.81 GHz to 6.86 GHz, and over 60% for the 250 MHz range from 6.67 GHz to 6.91 GHz. The presented architecture is compact, and easily scalable towards multiple readout channels, potentially opening up diverse opportunities in quantum information, microwave read-out and optomechanics.

3.
Nat Commun ; 14(1): 7924, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040683

RESUMO

The Josephson junction is a building block of quantum circuits. Its behavior, well understood when treated as an isolated entity, is strongly affected by coupling to an electromagnetic environment. In 1983, Schmid predicted that a Josephson junction shunted by a resistance exceeding the resistance quantum RQ = h/4e2 ≈ 6.45 kΩ for Cooper pairs would become insulating since the phase fluctuations would destroy the coherent Josephson coupling. However, recent microwave measurements have questioned this interpretation. Here, we insert a small Josephson junction in a Johnson-Nyquist-type setup where it is driven by weak current noise arising from thermal fluctuations. Our heat probe minimally perturbs the junction's equilibrium, shedding light on features not visible in charge transport. We find that the Josephson critical current completely vanishes in DC charge transport measurement, and the junction demonstrates Coulomb blockade in agreement with the theory. Surprisingly, thermal transport measurements show that the Josephson junction acts as an inductor at high frequencies, unambiguously demonstrating that a supercurrent survives despite the Coulomb blockade observed in DC measurements.

4.
Phys Rev E ; 107(5-1): 054113, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37329001

RESUMO

By using trajectory averaging to analyze the statistics of energy dissipation in the nonequilibrium energy-state transitions of a driven two-state system, we show that the average energy dissipation induced by external driving is connected to its fluctuations about equilibrium through the simple relation 2k_{B}T〈Q〉=〈δQ^{2}〉, which is preserved by an adiabatic approximation scheme. We use this scheme to obtain the heat statistics of a single-electron box with a superconducting lead in the slow-driving regime, where the dissipated heat becomes normally distributed with a relatively high probability to be extracted from the environment rather than dissipated. We also discuss the validity of heat fluctuation relations beyond driven two-state transitions and the slow-driving regime.


Assuntos
Elétrons , Temperatura Alta
5.
Phys Rev Lett ; 129(20): 207703, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36462007

RESUMO

We measure the rates and coupling coefficients for local Andreev, nonlocal Andreev, and elastic cotunneling processes. The nonlocal Andreev process, giving rise to Cooper pair splitting, exhibits the same coupling coefficient as the elastic cotunneling whereas the local Andreev process is more than 2 orders of magnitude stronger than the corresponding nonlocal one. Theory estimates describe the findings and explain the large difference in the nonlocal and local coupling arising from competition between electron diffusion in the superconductor and tunnel junction transparency.

6.
Phys Rev Lett ; 129(3): 037702, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35905338

RESUMO

We analyze theoretically the properties of the recently introduced and experimentally demonstrated converter of frequency to power. The system is composed of a hybrid single-electron box with normal island and superconducting lead, and the detector of the energy flow using a thermometer on a normal metal bolometer. Here, we consider its potential for metrology. The errors in power arise mainly from inaccuracy of injecting electrons at the precise energy equal to the energy gap of the superconductor. We calculate the main systematic error in the form of the excess average energy of the injected electrons and its cumulants, and that due to subgap leakage. We demonstrate by analytic and numerical calculations that the systematic error in detection can, in principle, be made much smaller than the injection errors, which also, with proper choice of system parameters, can be very small, <1%, at low enough temperature. Finally, we propose a simplified configuration for metrological purposes.

7.
Nat Commun ; 13(1): 1552, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322004

RESUMO

We report an experimental realization of a three-terminal photonic heat transport device based on a superconducting quantum circuit. The central element of the device is a flux qubit made of a superconducting loop containing three Josephson junctions, which can be tuned by magnetic flux. It is connected to three resonators terminated by resistors. By heating one of the resistors and monitoring the temperatures of the other two, we determine photonic heat currents in the system and demonstrate their tunability by magnetic field at the level of 1 aW. We determine system parameters by performing microwave transmission measurements on a separate nominally identical sample and, in this way, demonstrate clear correlation between the level splitting of the qubit and the heat currents flowing through it. Our experiment is an important step towards realization of heat transistors, heat amplifiers, masers pumped by heat and other quantum heat transport devices.

8.
Nat Nanotechnol ; 17(3): 239-243, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35058656

RESUMO

Single-electron transport relates an operation frequency f to the emitted current I through the electron charge e as I = ef (refs. 1-5). Similarly, direct frequency-to-power conversion (FPC) links both quantities through a known energy. FPC is a natural candidate for a power standard resorting to the most basic definition of the watt: energy emitted per unit of time. The energy is traceable to Planck's constant and the time is in turn traceable to the unperturbed ground state hyperfine transition frequency of the caesium 133 atom. Hence, FPC comprises a simple and elegant way to realize the watt6. In this spirit, single-photon emission7,8 and detection9 at known rates have been proposed as radiometric standards and experimentally realized10-14. However, power standards are so far only traceable to electrical units, that is, to the volt and the ohm6,15-17. In this Letter, we demonstrate an alternative proposal based on solid-state direct FPC using a hybrid single-electron transistor (SET). The SET injects n (integer) quasi-particles (QPs) per cycle into the two superconducting leads with discrete energies close to their superconducting gap Δ, even at zero source-drain voltage. Furthermore, the application of a bias voltage can vary the distribution of the power among the two leads, allowing for an almost equal power injection nΔf into the two. While in single-electron transport current is related to a fixed universal constant (e), in our approach Δ is a material-dependent quantity. We estimate that under optimized conditions errors can be well below 1%.

9.
Phys Rev Lett ; 126(8): 080603, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33709732

RESUMO

We introduce and realize demons that follow a customary gambling strategy to stop a nonequilibrium process at stochastic times. We derive second-law-like inequalities for the average work done in the presence of gambling, and universal stopping-time fluctuation relations for classical and quantum nonstationary stochastic processes. We test experimentally our results in a single-electron box, where an electrostatic potential drives the dynamics of individual electrons tunneling into a metallic island. We also discuss the role of coherence in gambling demons measuring quantum jump trajectories.

10.
Nat Commun ; 11(1): 4326, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859939

RESUMO

Heat is detrimental for the operation of quantum systems, yet it fundamentally behaves according to quantum mechanics, being phase coherent and universally quantum-limited regardless of its carriers. Due to their robustness, superconducting circuits integrating dissipative elements are ideal candidates to emulate many-body phenomena in quantum heat transport, hitherto scarcely explored experimentally. However, their ability to tackle the underlying full physical richness is severely hindered by the exclusive use of a magnetic flux as a control parameter and requires complementary approaches. Here, we introduce a dual, magnetic field-free circuit where charge quantization in a superconducting island enables thorough electric field control. We thus tune the thermal conductance, close to its quantum limit, of a single photonic channel between two mesoscopic reservoirs. We observe heat flow oscillations originating from the competition between Cooper-pair tunnelling and Coulomb repulsion in the island, well captured by a simple model. Our results highlight the consequences of charge-phase conjugation on heat transport, with promising applications in thermal management of quantum devices and design of microbolometers.

11.
Nano Lett ; 20(7): 5065-5071, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32551699

RESUMO

Quasiparticle (qp) poisoning is a major issue that impairs the operation of various superconducting devices. Even though these devices are often operated at temperatures well below the critical point where the number density of excitations is expected to be exponentially suppressed, their bare operation and stray microwave radiation excite the non-equilibrium qp's. Here we use voltage-biased superconducting junctions to demonstrate and quantify qp extraction in the turnstile operation of a superconductor-insulator-normal metal-insulator-superconductor single-electron transistor. In this operation regime, excitations are injected into the superconducting leads at a rate proportional to the driving frequency. We reach a reduction of density by an order of magnitude even for the highest injection rate of 2.4 × 108 qp's per second when extraction is turned on.

12.
Phys Rev Lett ; 124(17): 170601, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32412284

RESUMO

We apply quantum trajectory techniques to analyze a realistic setup of a superconducting qubit coupled to a heat bath formed by a resistor, a system that yields explicit expressions of the relevant transition rates to be used in the analysis. We discuss the main characteristics of the jump trajectories and relate them to the expected outcomes ("clicks") of a fluorescence measurement using the resistor as a nanocalorimeter. As the main practical outcome, we present a model that predicts the time-domain response of a realistic calorimeter subject to single microwave photons, incorporating the intrinsic noise due to the fundamental thermal fluctuations of the absorber and finite bandwidth of a thermometer.

13.
Nat Commun ; 11(1): 367, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31953442

RESUMO

Quantum calorimetry, the thermal measurement of quanta, is a method of choice for ultrasensitive radiation detection ranging from microwaves to gamma rays. The fundamental temperature fluctuations of the calorimeter, dictated by the coupling of it to the heat bath, set the ultimate lower bound of its energy resolution. Here we reach this limit of fundamental equilibrium fluctuations of temperature in a nanoscale electron calorimeter, exchanging energy with the phonon bath at very low temperatures. The approach allows noninvasive measurement of energy transport in superconducting quantum circuits in the microwave regime with high efficiency, opening the way, for instance, to observe quantum jumps, detecting their energy to tackle central questions in quantum thermodynamics.

14.
Phys Rev Lett ; 122(23): 230602, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31298917

RESUMO

We investigate the fluctuations of the time elapsed until the electric charge transferred through a conductor reaches a given threshold value. For this purpose, we measure the distribution of the first-passage times for the net number of electrons transferred between two metallic islands in the Coulomb blockade regime. Our experimental results are in excellent agreement with numerical calculations based on a recent theory describing the exact first-passage-time distributions for any nonequilibrium stationary Markov process. We also derive a simple analytical approximation for the first-passage-time distribution, which takes into account the non-Gaussian statistics of the electron transport, and show that it describes the experimental distributions with high accuracy. This universal approximation describes a wide class of stochastic processes, and can be used beyond the context of mesoscopic charge transport. In addition, we verify experimentally a fluctuation relation between the first-passage-time distributions for positive and negative thresholds.

15.
Phys Rev Lett ; 122(15): 150604, 2019 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-31050528

RESUMO

We experimentally realize protocols that allow us to extract work beyond the free energy difference from a single-electron transistor at the single thermodynamic trajectory level. With two carefully designed out-of-equilibrium driving cycles featuring kicks of the control parameter, we demonstrate work extraction up to large fractions of k_{B}T or with probabilities substantially greater than 1/2, despite the zero free energy difference over the cycle. Our results are explained in the framework of nonequilibrium fluctuation relations. We thus show that irreversibility can be used as a resource for optimal work extraction even in the absence of feedback from an external operator.

16.
Phys Rev Lett ; 118(18): 180601, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28524675

RESUMO

Statistical physics provides the concepts and methods to explain the phase behavior of interacting many-body systems. Investigations of Lee-Yang zeros-complex singularities of the free energy in systems of finite size-have led to a unified understanding of equilibrium phase transitions. The ideas of Lee and Yang, however, are not restricted to equilibrium phenomena. Recently, Lee-Yang zeros have been used to characterize nonequilibrium processes such as dynamical phase transitions in quantum systems after a quench or dynamic order-disorder transitions in glasses. Here, we experimentally realize a scheme for determining Lee-Yang zeros in such nonequilibrium settings. We extract the dynamical Lee-Yang zeros of a stochastic process involving Andreev tunneling between a normal-state island and two superconducting leads from measurements of the dynamical activity along a trajectory. From the short-time behavior of the Lee-Yang zeros, we predict the large-deviation statistics of the activity which is typically difficult to measure. Our method paves the way for further experiments on the statistical mechanics of many-body systems out of equilibrium.

17.
Phys Rev E ; 94(2-1): 022123, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27627262

RESUMO

We discuss the energy distribution of free-electron Fermi-gas, a problem with a textbook solution of Gaussian energy fluctuations in the limit of a large system. We find that for a small system, characterized solely by its heat capacity C, the distribution can be solved analytically, and it is both skewed and it vanishes at low energies, exhibiting a sharp drop to zero at the energy corresponding to the filled Fermi sea. The results are relevant from the experimental point of view, since the predicted non-Gaussian effects become pronounced when C/k_{B}≲10^{3} (k_{B} is the Boltzmann constant), a regime that can be easily achieved for instance in mesoscopic metallic conductors at sub-kelvin temperatures.

18.
Phys Rev E ; 94(6-1): 062127, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28085446

RESUMO

Motivated by proposed thermometry measurement on an open quantum system, we present a simple model of an externally driven qubit interacting with a finite-sized fermion environment acting as a calorimeter. The derived dynamics is governed by a stochastic Schrödinger equation coupled to the temperature change of the calorimeter. We prove a fluctuation relation and deduce from it a notion of entropy production. Finally, we discuss the first and second law associated with the dynamics.

19.
Artigo em Inglês | MEDLINE | ID: mdl-26274125

RESUMO

Stochastic thermodynamics and the associated fluctuation relations provide the means to extend the fundamental laws of thermodynamics to small scales and systems out of equilibrium. The fluctuating thermodynamic variables are usually treated in the context of either isolated Hamiltonian evolution, or Markovian dynamics in open systems. However, there is no reason a priori why the Markovian approximation should be valid in driven systems under nonequilibrium conditions. In this work, we introduce an explicitly non-Markovian model of dynamics of an open system, where the correlations between the system and the environment drive a subset of the environment out of equilibrium. Such an environment gives rise to a new type of non-Markovian entropy production term. Such non-Markovian components must be taken into account in order to recover the fluctuation relations for entropy. As a concrete example, we explicitly derive such modified fluctuation relations for the case of an overheated single electron box.

20.
Artigo em Inglês | MEDLINE | ID: mdl-25679608

RESUMO

We theoretically investigate fluctuation relations in a classical incomplete measurement process where only partial information is available. The scenario we consider consists of two coupled single-electron boxes where one or both devices can undergo a nonequilibrium transformation according to a chosen protocol. The entropy production of only one of the two boxes is recorded and fluctuation relations for this quantity are put to a test, showing strong modifications whose nature depends upon the specific case study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...